
MA 681, Spring 2016

Assignment 13.
Residues and the good stuff

This assignment is due Wednesday, April 27. Collaboration is welcome. If you
do collaborate, make sure to write/type your own paper.

(1) Compute

(a)
∞∫

−∞

dx
x2+p2 , for p > 0,

(b)
∞∫

−∞

dx
(x2+p2)2 , for p > 0.

(2) Find the following residues:

(a) res
0

1/ez.

(b) Find residues of z2

(z+1)2(z−4)(z+3) at all its poles.

(c) Is residue of sin(1/z) defined at z = 0? If yes, find the residue; if not,
explain why.

(d) Same question about 1
sin(1/z) .

(3) (a) Find res
a

φ(z)
(z−a)n , where φ is a given function analytic at a, φ(a) ̸= 0,

and n is a positive integer.
(b) Suppose a is a simple pole of f , and let res

a
f = A. Find res

a
(φf),

where φ(z) is analytic at a.

(4) In this problem we compute the sum 1
12 + 1

22 + 1
32 + . . ..

(a) Find first two nonzero terms of the Laurent series for cot z at 0.
(Hint: For example, you can find first few terms of the Taylor series
at 0 of analytic function z cot z by differentiation; or you can straight-
forwardly divide cos by sin.)

(b) Find all isolated singular points of cot(πz). Find the corresponding
residues. (Hint: The points are z = k, k ∈ Z.)

(c) Consider the function cot(πz)
z2 . Find its residues at all its isolated sin-

gular points. (Hint: At z = k ̸= 0, use Problem 3b. Treat z = 0
separately using 4a.)

(d) Let γn be the square with side 2Rn = 2n + 1 centered at the origin
(that is, the square with vertices ±(n+ 1

2 )±i(n+ 1
2 )). Find the integral∫

γn

cot(πz)

z2
dz

using the residue theorem.
(e) Show that on horizontal sides z = x± iRn, | cotπz| → 1 when n → ∞.

Show that on vertical sides z = Rn±iy, | cotπz| is ultimately bounded
by some constant C.
(Hint: For example, you can use formulas | sin z|2 = sinh2 y + sin2 x,
| cos z|2 = cosh2 y − sin2 x that we got in HW4.)

(f) Conclude that | cot(πz)| is ultimately bounded by some constant D on
squares γn.

— see next page —



2

(g) Conclude that∫
γn

cot(πz)

z2
dz → 0 as n → ∞.

(Hint: Use |
∫
fdz| ≤ ML.)

(h) Put together 4d and 4g to compute 1
12 + 1

22 + 1
32 + . . .

(Hint: If your answer is not π2/6, something is wrong.)

(5) Similar to the Problem 4, find the sum

1

14
+

1

24
+

1

34
+ . . . .

You can take for granted that at 0, cot z = c−1

z + c1z − z3/45 + . . ., where
c−1, c1 were found in 4a.
(Hint: If your answer is not π4/90, something is wrong.)

Comment. The same technique can be used to find
∞∑

n=−∞
R(n), where

R(n) is an arbitrary rational function with the denominator Q(z) at least 2
degrees higher than the numerator, and Q(n) ̸= 0 at n ∈ Z. The argument
is even a bit easier because under such constraints, because there is no need
to deal with the annoying residue at 0 separately.

In the case Q(n) = 0 for some n (e.g. R(z) = 1/z2 or 1/z4 as above),
one can find the same sum, omitting the infinite terms (as we actually did
in the Problems 4 and 5).

Question. Why doesn’t this help find 1
13 + 1

23 + 1
33 + . . .?


